Puzzle Problems

Family Support Materials 1

This week your student will work on solving linear equations. We can think of a balanced hanger as a metaphor for an equation. An equation says that the expressions on either side have equal value, just like a balanced hanger has equal weights on either side.

$$
a+2 b=5 b
$$

If we have a balanced hanger and add or remove the same amount of weight from each side, the result will still be in balance.

We can do this with equations as well: adding or subtracting the same amount from both sides of an equation keeps the sides equal to each other. For example, if $4 x+20$ and $-6 x+10$ have equal value, we can write an equation $4 x+20=-6 x+10$. We could add -10 to both sides of the equation or divide both sides of the equation by 2 and keep the sides equal to each other. Using these moves in systematic ways, we can find that $x=-1$ is a solution to this equation.

Here is a task to try with your student:
Elena and Noah work on the equation $\frac{1}{2}(x+4)=-10+2 x$ together. Elena's solution is $x=24$ and Noah's solution is $x=-8$. Here is their work:

Elena:

$$
\begin{aligned}
\frac{1}{2}(x+4) & =-10+2 x \\
x+4 & =-20+2 x \\
x+24 & =2 x \\
24 & =x \\
x & =24
\end{aligned}
$$

Noah:

$$
\begin{aligned}
\frac{1}{2}(x+4) & =-10+2 x \\
x+4 & =-20+4 x \\
-3 x+4 & =-20 \\
-3 x & =-24 \\
x & =-8
\end{aligned}
$$

Do you agree with their solutions? Explain or show your reasoning.
Solution:
No, they both have errors in their solutions.
Elena multiplied both sides of the equation by 2 in her first step, but forgot to multiply the $2 x$ by the 2 . We can also check Elena's answer by replacing x with 24 in the original equation and seeing if the equation is true.

$$
\begin{aligned}
\frac{1}{2}(x+4) & =-10+2 x \\
\frac{1}{2}(24+4) & =-10+2(24) \\
\frac{1}{2}(28) & =-10+48 \\
14 & =38
\end{aligned}
$$

Since 14 is not equal to 38 , Elena's answer is not correct.
Noah divided both sides by -3 in his last step, but wrote -8 instead of 8 for $-24 \div-3$. We can also check Noah's answer by replacing x with -8 in the original equation and seeing if the equation is true. Noah's answer is not correct.

Systems of Linear Equations

Family Support Materials 2

This week your student will work with systems of equations. A system of equations is a set of 2 (or more) equations where the letters represent the same values. For example, say Car A is traveling 75 miles per hour and passes a rest area. The distance in miles it has traveled from the rest area after t hours is $d=75 t$. Car B is traveling toward the rest area and its distance from the rest area at any time is $d=14-65 t$. We can ask if there is ever a time when the distance of Car A from the rest area is the same as the distance of Car B from the rest area. If the answer is "yes," then the solution will correspond to one point that is on both lines, such as the point $(0.1,7.5)$ shown here. 0.1 hours after Car A passes the rest area, both cars will be 7.5 miles from the rest area.

We could also answer the question without using a graph. Since we are asking when the d values for each car will be the same, we are asking for what t value, if any, makes $75 t=14-65 t$ true. Solving this equation for t, we find that $t=0.1$ is a solution and at that time the cars are 7.5 miles away since $75 t=75 \cdot 0.1=7.5$. This finding matches the graph.

Here is a task to try with your student:
Lin and Diego are biking the same direction on the same path, but start at different times. Diego is riding at a constant speed of 18 miles per hour, so his distance traveled in miles can be represented by d and the time he has traveled in hours by t, where $d=18 t$. Lin started riding a quarter hour before Diego at a constant speed of 12 miles per hour, so her total distance traveled in miles can be represented by d, where $d=12\left(t+\frac{1}{4}\right)$. When will Lin and Diego meet?

Solution:

To find when Lin and Diego meet, that is, when they have traveled the same total distance, we can set the two equations equal to one another: $18 t=12\left(t+\frac{1}{4}\right)$. Solving this equation for t,

$$
\begin{gathered}
18 t=12 t+3 \\
6 t=3 \\
t=\frac{1}{2}
\end{gathered}
$$

They meet after Diego rides for one half hour and Lin rides for three quarters of an hour. The distance they each travel before meeting is 9 miles, since $9=18 \cdot \frac{1}{2}$. Another way to find a solution would be to graph both $d=18 t$ and $d=12\left(t+\frac{1}{4}\right)$ on the same coordinate plane and interpret the point where these lines intersect.

